
Eidgenössische
Technische Hochschule
Zürich

Ecole polytechnique fédérale de Zurich
Politecnico federale di Zurigo
Federal Institute of Technology at Zurich

Departement of Computer Science 12. November 2018
Markus Püschel, David Steurer

Algorithms & Data Structures Homework 8 HS 18

Exercise Class (Room & TA):
Submitted by:
Peer Feedback by:
Points:

Exercise 8.1 Search Trees.

1. Draw the resulting tree when the keys 1,3,7,4,5,8,6,2 in this order are inserted into an initially
empty natural search tree.

2. Delete key 4 in the above tree, and afterwards key 7 in the resulting tree.

3. Draw the resulting tree when the keys are inserted into an initially empty AVL tree.

4. Delete key 7 in the above tree, and afterwards key 8 in the resulting tree.

Exercise 8.2 Tree Traversals.

There are three essential ways to traverse binary trees. The �rst one is Preorder(T ), which at �rst visits
the root v, then Tl(v) and then Tr(v), where Tl(v) is the left subtree of v and Tr(v) is the right subtree
of v. The second one is Postorder(T ), which at �rst visits Tl(v), then Tr(v) and then v. The third one
is Inorder(T ), which at �rst visits Tl(v), then v and then Tr(v).

In each case the left and right subtrees are visited recursively in the same order.

1. Consider this pseudocode for the Preorder procedure:

Algorithm 1: Preorder(T )
1 if T is non-empty then
2 v ← Root(T );
3 Visit(v);
4 Preorder(Tl(v));
5 Preorder(Tr(v));
6 end

Write pseudocodes for Postorder and Inorder procedures.

2. For the above search trees in 8.1.1 and 8.1.3 give the Preorder, the Postorder, the Inorder of the
nodes.

3. Draw the binary tree with keys 1, 2, 3, 4, 5, 6, 7, 8 such that the Preorder starts with 3, 1, 2, 7 and
the Postorder ends with 5, 8, 7, 3.



Exercise 8.3 Advanced Search Trees (1 Point).

In this exercise, we wish to extend the functionality of a search tree. We consider a binary search tree
over integers. In addition to �nding a number, we want to be able to answer the following questions:

1. How many elements in the tree are multiples of 3 and greater than a given number k?

2. How many elements in the tree are multiples of 3 and (strictly) between two given numbers k1
and k2, with k1 < k2?

Discuss how you can modify the tree so that you can answer these questions e�ciently. Describe how
the insertion and the removal operation must be changed accordingly. Include a discussion of the run-
ning times of the modi�ed algorithms.

Exercise 8.4 Maximum Depth Di�erence of two Leaves.

Consider an AVL tree of height h. What is the maximum possible di�erence of the depths of two leaves?
Imaging which structure such trees need to have, and draw examples of corresponding trees for every
h ∈ {2, 3, 4}. Derive a recursive formula (depending on h), solve it and use induction to prove the
correctness of your solution. Provide a detailed explanation of your considerations.

Note: For the proof the principle of complete induction can be used. LetA(n) be a statement for a number
n ∈ N. If, for every n ∈ N, the validity of all statements A(m) for m ∈ {1, . . . , n − 1} implies the
validity of A(n), then A(n) is true for every n ∈ N.(

∀n ∈ N :
(
∀m ∈ {1, . . . , n− 1} : A(m)

)
⇒ A(n)

)
⇒ ∀n ∈ N : A(n). (1)

Thus, complete induction allows multiple base cases and inductive hypotheses.

Exercise 8.5 One-Column Candy Crush (2 Points.).

Consider a column of n candies, and assume that if three or more adjacent candies in this column
are equal, then these candies can be removed, and the column shrinks. Removing the candies is done
with the following tie breaking rule: The candies are removed from top to bottom, i.e., when there is
more than one group that can be removed at the same time, the upper group is removed �rst. We are
interested in the number of candies that can not be removed.

You get this column of candies stored on a stack S, such that the �rst (topmost) candy of the column
is on the top of this stack. Recall that the operations on a stack are top(), pop(), and push(v)
where v is a candy. Moreover, you can access the number of candies in the stack. Assume that all these
operations require constant time.

Your task is to design a linear time algorithm that returns the number of the remaining candies. Your
algorithm is allowed to use stack S plus one additional stack T , for which you can assume that it
is initially empty. On top of that, you are allowed to use only O(1) extra memory space. Provide an
analysis of the actual running time of your algorithm.

Submission: On Monday, 19.11.2018, hand in your solution to your TA before the exercise class starts.

2


